(单选题)
A、B、C、D、E是5个不同的整数,两两相加的和共有8个不同的数值,分别是17、25、28、31、34、39、42、45,则这5个数中能被6整除的有( )个。
A.0
B.1
C.2
D.3
参考答案:C
参考解析:
不妨设A<B<C<D<E,则容易知道A+B=17,A+C=25,C+E=42,D+E=45,只要知道B+C的值就可以了。B+C只可能是剩下的28,31,34,39中之一。由于(A+B)+(A+C)+(B+C)=2(A+B+C)为偶数,而A+B和A+C都为奇数,故B+C为偶数,B+C只能是28或34;又B+C<B+D<B+E<C+E<D+E,即比B+C大的数至少有4个,故B+C不能是34或39,综合可知,B+C=28,于是可解A=7,B=10,C=18,D=21,E=24,能被6整除的数有18和24两个,C选项正确,A、B、D选项错误,故本题应选C。
知识点:其他杂题 数量关系 数学运算 通用 行测
