对公务员考试行测中数学运算各个题目进行整理,有一类是“容斥原理”问题,主要包括两集合问题和三集合问题,此类问题是每年必考的题型,现在本站对此类题目进行汇总,希望能帮助4.24联考的广大考生顺利通过考试。
1、公式法:适用于条件与问题都可直接代入公式的题目。利用公式法解决问题时要注意公式中每个字母所代表的含义,这是考生经常容易出错的地方。
(1)两个集合:
涉及到两个集合的容斥原理的题目相对比较简单,可以按照下面公式代入计算:
“都”是指满足该条件的集合数。
(2)三个集合:
︱A∪B∪C︱=︱A︱+︱B︱+︱C︱-︱A∩B︱-︱B∩C︱-︱C∩A︱+︱A∩B∩C︱
2、韦恩图法:用图形来表示集合关系,变抽象文字为形象图示。因其具有直观性,便捷性和可行性,因此推荐首选文氏画图解题。
针对历年的真题进行讲解。
例1、对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有( )。(2005年国家公务员考试一卷行测第45题)
A.22人 B.28人 C.30人 D.36人
解析:设A=喜欢看球赛的人(58),B=喜欢看戏剧的人(38),C=喜欢看电影的人(52),则有:
A∩B=既喜欢看球赛的人又喜欢看戏剧的人(18)
B∩C=既喜欢看电影又喜欢看戏剧的人(16)
A∩B∩C=三种都喜欢看的人(12)
A∪B∪C=看球赛和电影、戏剧至少喜欢一种(100)
由集合运算公式可知:
C∩A=A+B+C-(A∪B∪C+A∩B+B∩C-A∩B∩C)
=148-(100+18+16-12)=26
所以,只喜欢看电影的人=C-B∩C-C∩A+A∩B∩C
=52-16-26+12
=22
注:这道题运用公式运算比较复杂,运用文氏画图法我们很快就可以看出结果。文氏解法如下:
例2、外语学校有英语、法语、日语教师共27人,其中只能教英语的有8人,只能教日语的有6人,能教英、日语的有5人,能教法、日语的有3人,能教英、法语的有4人,三种都能教的有2人,则只能教法语的有( )。(2005年国家公务员考试二卷行测第45题)
A.4人 B.5人 C.6人 D.7人
解析:首先采用公式法解决此题,设A=英语教师(8+5+4-2=15),B=法语教师,C=日语教师(6+5+3-2=12),(但应注意的是在做题之前,我们首先必须了解公式中A,B,C三个集合所代表的含义,并非A=8,C=6.),则
C= A∪B∪C-A-C+A∩B+B∩C+C∩A-A∩B∩C
=27-15-12+5+3+4-2=10,那么只能教法语的教师=10-3-4+2=5
另外,此题如果用韦恩图法会相当简单,设只能教法语的人数为X,则依题意得韦恩图(见下图):
例3、某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。问接受调查的学生共有多少人?( )(2010年国家公务员考试行测第47题)
A.120 B.144 C.177 D.192
解析:同上,我们可以直接利用三个集合并的运算来解决这个集合问题,公式如下: