分析:由四位老人的平均年龄是82岁,可知四位老人的年龄之和为328(岁),由甲、乙两位老人的平均年龄比丙、丁两位老人的平均年龄大2岁,可知甲、乙两位老人的年龄之和比丙、丁两位老人的年龄之和大4岁。
因此可以求出甲、乙两位老人的年龄之和为166(岁),
因为甲老人今年92岁,所以乙老人今年74(岁)。
由甲、乙两位老人的年龄之和是166岁可以求出丙、丁两位老人的年龄之和为162(岁),
因为丙老人比丁老人小2岁,
所以丙老人今年80(岁),
丁老人今年82(岁)。
【352】一种商品,按期望得到50%的利润来定价。结果只销售掉70%商品,为尽早销掉剩下的商品,商店决定按定价打折出售。这样获得的全部利润,是原来所期望利润的82%问打了几折?
分析:假设成本为x,打折a,则定价为1.5x,期望利润为0.5x,所以(0.7×0.5x+(1.5ax-x)×30%)/0.5x=0.82,求得a=0.8
【353】有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?
分析:如果没有破损,运费应是400元.但破损一只要减少1+0.2=1.2(元).因此破损只数是(400-379.6)÷(1+0.2)=17(只).
【354】某部门原计划召开为期10天的重要会议,预算费用为32000元,由于议程安排紧凑,会期比计划缩短了两天,实花费用节省了25%。其中,仅住宿一项就占会议节省费用的60%,问会议住宿费节省了多少元?
A.3500元; B.3800元; C.4800元; D.4000元
分析:设节省住宿费为x,则x=32000×25%×60%=4800(元)。这道题有些绕弯,但不难,只要搞清预算的25%是多少元,即为节约的费用,再乘以60%即可。故本题正确答案为C。
【355】A、B两人从同一起跑线上绕300米环形跑道跑步,A每秒钟跑6米,B每秒钟跑4米,问第二次追上B时A跑了多少圈?
A.9; B.8; C.7; D.6
分析:因为是环形跑道,当A第一次追上B时,实际上A比B多跑了一圈(300米),当第二次追上B时,A比B则需多跑两圈,共600米。A比B每秒多跑6-4=2(米),多跑600米需时为600÷2=300(秒)时间。所以可列式为:追及距离÷速度差=追及时间。设圈数为x,则x=6米/秒×300秒÷300米/圈=6圈。故本题正确答案为D。
【356】某剧团男女演员人数相等,如果调出8个男演员,调进6个女演员后,女演员人数是男演员人数的3倍,该剧团原有多少女演员?
A.20; B.15; C.30; D.25
分析:从题中可知,女演员调进6人后,女演员人数则是男演员调出8人后的3倍。故可设原男女演员皆为x,即x+6=(x-8)×3,x=15。所以,女演员原来是15人。故本题的正确答案为B。
【357】一个村的东、西、南、北街的总人数是500人,四条街人数比例为1∶2∶3∶4,问北街的人数是多少?
A.250; B.200; C.220; D.230
分析:四条街总人数可分成1+2+3+4=10(份),每份为50人。北街占4份,50×4=200(人)。故本题的正确答案为B。
【358】假如今天是2004年的11月28日,那么再过105天是2005年的几月几日?
A.2005年2月28日; B.2005年3月11日;
C.2005年3月12日; D.2005年3月13日;
分析:计算月日要记住几条法则。一是每年的1、3、5、7、8、10、12这七个月是31天,二是每年的4、6、9、11这四个月是30天,三是每年的2月,如果年份能被4整除,则该年的2月是29天(如2004年),如果该年的年份不能被4整除,则是28天(如2005年)。记住这些特殊的算法,到时按月日去推算即可。 具体到这一题,11月是30天,还剩2天,12月、1月是31天,2月是28天,那么2+31+31+28=92(天),105-92=13(天),即3月13日。故本题正确答案为D。
【359】今天是星期二,问再过36天是星期几?
A.1; B.2; C.3 ; D.4
分析:这类题的算法是,天数÷7的余数+当天的星期数,即36÷7=5余1,1+2=3。故本题的正确答案为C。
【360】一笼中的鸡和兔共250条腿,已知鸡的只数是兔只数的3倍,问笼中共有多少只鸡?
A.50; B.75; C.100; D.125
分析:鸡2条腿。兔子4条腿设鸡X只兔Y只有 2X+4Y=250又X=3Y 代入,10y=250Y=25 所以X=3×25=75 故本题正确答案为B。
推广公式:总脚数÷2-总头数=兔子数.鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数);兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数)