近年来,各地的公考试题中“统筹问题”屡次出现。统筹问题是一个研究怎样节省时间、提高效率的问题,这一题型能够深入地考查考生的统筹安排能力,而这种能力正是公务员在行政工作中所必需的。随着公务员考试数学运算试题越来越接近生活,注重实际,这类题目出现的几率也越来越大。在此,崔熙琳老师特别选择了一些真题进行讲解,希望能对各位考生有所帮助。
所谓“统筹方法”,就是一种安排工作进程的数学方法。统筹方法的应用,主要是通过重组、优化等手段把工作的程序安排好,从而提高办事效率。
举个例子,让读者体会一下统筹在生活中的应用。比如,想泡壶茶喝,具体情况是:没有开水,水壶要洗,茶杯要洗,茶叶也没有了。怎么办?
办法一:先洗好水壶,灌上凉水,放在火上烧着,在等待水开的时间里,洗茶壶、茶杯,拿茶叶,等水开了,泡茶喝。
办法二:先做好准备工作,洗水壶、茶杯,拿茶叶,等一切就绪,再灌水烧水,然后等待水开了泡茶喝。
办法三:洗净水壶,灌上凉水,放在火上烧着,等水开了之后,再洗茶杯、拿茶叶,然后泡茶喝。
哪一种办法时间最少?相信大家都能看出来是第一种办法最优,因为后两种办法都窝了工。
例:2011年4月24日联考题
某公司要买100本便签纸和100支胶棒,附近有两家超市。A超市的便签纸0.8元一本,胶棒2元一支且买2送1。B超市的便签纸1元一本且买3送1,则胶棒1.5元一支,如果公司采购员要在这两家超市买这些物品,则他至少要花多少元钱?
A. 183.5 B. 208.5 C. 225 D. 230
答案及解析:B。本题属于费用问题中的统筹优化。通过比较发现,A超市的便签纸贵,胶棒便宜(4元3支),B超市的便签纸便宜(3元4本),胶棒贵。所以购买方法是100本便签在B超市购买需75元(买75本,送25本),100支胶棒99支在A超市买需132元(买66支,送33支),还有1支在B超市买需1.5元,故而总钱数为75+132+1.5=208.5元。故选B。
例:2009年某省政法干警考试真题
一个车队有三辆汽车,担负着五家工厂的运输任务,这五家工厂分别需要7、9、4、10、6名装卸工,共计36名;如果安排一部分装卸工跟车装卸,则不需要那么多装卸工,而只需要在装卸任务较多的工厂再安排一些装卸工就能完成装卸任务,那么在这种情况下,总共至少需要名装卸工才能保证各厂的装卸需求。
A. 26 B. 27 C. 28 D. 29
答案及解析:A。本题可以采用假设法来推理。设三辆汽车分别为甲、乙、丙车;五个工厂分别为A、B、C、D、E厂,则最初状态甲、乙、丙三车上人数为0,五工厂分别有人7、9、4、10、6人。我们在五个工厂都减少1名装卸工时,五工厂共减少5人,而每辆车上的人数各增加1人,车上共增加3人,所以装卸工的总人数减少2人。当车上增加到4人,C厂剩余的人数为0,此时每辆车上的人数每增加1人,车上共增加3人,而五工厂共减少4人,所以装卸工的总人数仍减少。当车上增加到6人,C、E厂剩余的人数为0,此时每车上的人数每增加1人,车上共增加3人,而五工厂共减少3人,所以装卸工的总人数不变。当车上增加到7人,A、C、E厂剩余的人数为0,此时每辆车上的人数如果再每增加1人,车上共增加3人,而五工厂共减少2人,所以装卸工的总人数增加。所以当车上的人数为6人(或7人)的时候,装卸工的总人数最少。如果每个车上有6个人,A、B、C、D、E厂剩余人数分别为1、3、0、4、0,三辆车上共有18人,总共需装卸工26人。如果每个车上有7个人,A、B、C、D、E厂剩余人数分别为0、2、0、3、0,三辆车上共有21人,总共也需装卸工26人。
例:2006年中央、国家录用公务员真题
人工生产某种装饰用珠链,每条珠链需要珠子25颗,丝线3条,搭扣1对,以及10分钟的单个人工劳动。现有珠子4880颗,丝线586条,搭扣200对,4个工人。则8小时最多可以生产珠链。
A. 200条 B. 195条 C. 193条 D. 192条
答案及解析:D。这是一道统筹题。题干所给的数字、条件很多,做此类“多种原材料”类的统筹试题,首先可以假设所有的原材料都足够充分,让工人满负荷工作。在这种情况下,所能产出的最小值即为所求。根据题目条件,每个工人每小时可以生产6条珠链,则4个工人8小时可以生产:4×6×8=192条。在四个备选项中,192是最小的数字,这告诉我们,原材料是足够的,但是4个工人在8小时内最多只能生产出珠链192条。所以,正确选项是D。(补充:如果计算的结果不是最小的数字192,那就需要进一步考虑珠子、丝线、搭扣的数量是不是影响结果了。)