52. 甲夫妇邀请 乙丙两对夫妇来家做客,大家随意围坐在一个圆桌上用餐。请问每对夫妇相邻而坐的概率是多大?
A. 1/15 B.2/15 C1/5 D.4/15
这个题目我们必须先掌握一个基础知识
环形排列跟直线排列的区别。 我们知道直线排列 例如 5个人站成一排 有多少种方法 P55=120,
但是如果问 5个人围成一圈有多少种方法呢? 我们必须注意环形排列的特别之处, 环形的开始也就是结束。首尾相连的。所以没有绝对位置之分,只有相对位置。 所以第一个人一般是作为参照物。不参与全排列。所以5个人围成一圈是P44=24种方法
再看这个题目。
先看 三对夫妇六个人全排列应该是P55=120种
满足条件的情况:我们我可以先将这三对夫妇捆绑 视为3个人 那么围成一桌的全排列是 P22=2种,然后我们再对每对夫妇进行调换位置 那就是 2*2*2=2^3
所以满足情况的方法有2×8=16种
答案是16/120=2/15
53. 一个袋里有四种不同颜色的小球,每次摸出两个,要保证有10次所摸的结果是一样的,至少要摸多少次?
A 55 B 87 C 41 D 91
这个题目是一个典型的“抽屉原理”题目!
碰到抽屉原理类型的题目,我们首先需要去寻找什么是抽屉。其次是抽屉的个数。 当这些都确定以后。我们可以根据题目提供的条件 对抽屉进行极限化分配。
什么是抽屉,题目中告诉我们 四种不同颜色的小球任意取2个小球组成的不同组合,这里就是指不同颜色的搭配形成的组合
那么我们看 有多少个抽屉(组合)呢
4种颜色的搭配应该是 分两种情况
(1) 不同颜色的组合: C(4,2)=6
(2) 相同颜色的组合: C(4,1)=4
很明显了 抽屉(组合)的种数就是6+4=10种
要的10次所摸的结果一样。最坏的情况就是每种组合都会摸到最大限度
最大限度就是10-1=9种
所以答案是9×10+1=91 选D