9. 一个7×7共计49个小正方形组成的大正方形中,分别填上1~49这49个自然数。每个数字只能填1次。使得横向7条线,纵向7跳线,两个对角线的共计16条线上的数字和相等!则其中一个对角线的7个数字之和是()
A 175 B 180 C 195 D 210
这个题目猛一看好复杂,其实仔细看看就会发现端倪。虽然看上去像是一个幻方问题 或者类似于九宫图,但是这里并不是让你关注这个。
49个数字全部填入, 满足条件后,我们发现横向有7条线 产生7个结果并且相等。那么这个7个结果的和 就是这7条线上的所有数字之和,很明显就发现了就是1~49个数字之和了,根据等差数列求和公式:(首项+尾项)×项数/2=总和
(1+49)×49/2=25×49
则每条线的和是 25×49/7=175
因为对角线和横线7条线的任意一条的和相同所以答案就是175.
10. 把1~100这100个自然数,按顺时针方向依次排列在一个圆圈上,从1开始,顺时针方向,留1,擦去2,3,4,留5,擦去6,7,8……(每擦去3个数,留一个数)。直到最后剩下的一个数是多少?
A、47 B、48 C、49 D、64
考察点:周期循环等比数列的问题
这个题目考到的可能性不是特别大,但是不排除。就只介绍规律吧。
主要是看间隔编号的个数。 如该题 间隔编号就是1个。例如 留1拿走2,留3拿走4,间隔是1:
以下公式是按照从去1开始的。
那么 公式是: 2/1×(A-2^n) 这是最后剩下的数字 2^n表示A内最大的值 A表示原始的编号总数。
间隔是2:3/2×(A-3^n)
间隔是3:4/3×(A-4^n)
间隔是4:5/4×(A-5^n)
特别注意的是:此题的A值不是随便定的 必须满足 A-1要能够除以间隔编号数目。否则最后的结果就是全部被拿走。
该题答案是: 按照公式4/3×(100-4^3)=48 但是这是按照去1开始得如果是留1 那么答案是 48+1=49