21. 某团体从甲地到乙地,甲、乙两地相距100千米,团体中一部分人乘车先行,余下的人步行,先坐车的人到途中某处下车步行,汽车返回接先步行的那部分人,全部人员同时到达。已知步行速度为8千米/小时,汽车速度为40千米/小时。问使团体全部成员同时到达乙地需要多少时间?
A、5.5 小时 B、 5 小时 C、4.5小时 D、4 小时
这个题目已经成为典型的形成模型问题了,这个团的人分2部分步行, 要得同时到达 那么必然是步行的路程都相同,乘车的路程也相同。抓住这个我们就好办了!
根据题目条件, 我先给大家画个图
甲...............P.............................Q...............乙
图中:P是汽车回来接先步行的人的地点
Q是汽车把先乘车的人放下的地点。
那么我们可以看出,甲~P是先步行的人步行的举例。Q~乙是先乘车的人步行的举例
甲~P=Q~乙
在根据相同时间内 路程之比=速度比=40:8=5:1
假设先步行的人步行的举例为1份,
那么汽车的行驶距离就是5份,我们发现 汽车走得路程是 甲~Q~P 这段距离是5份,
已知,甲~p=1份, Q~乙=甲~P=1份
那么全程就是 甲乙路程=(5+1+2)/2=4份
则总路程分成4个单位
每个单位是 100/4=25
则以先乘车的人为例 计算时间是 75/40+25/8=5小时
【总结】这类汽车接送的问题 主要是抓住速度之比转换成路程之比,进而将问题大大简化。
下面提供3道练习题目!
例一:100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间最少是?
例二:有两个班的小学生要到少年宫参加活动,但只有一辆车接送。第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,最终两个班的学生同时到达少年宫。已知学生步行速度为每小时4公里,载学生时车速每小时40公里,空车是50公里/小时,问第一班的学生步行了全程的几分之几?
A.1/7 B.1/6 C.3/4 D.2/5
例三:甲乙两班同时从学校去公园,甲步行每小时4千米,乙步行每小时3千米,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好只能做一个班的学生,为了使这两个班学生在最短的时间内到达,那么甲与乙学生需要步行的距离之比是()。
A、15:11B、17:22 C、19:24D、21:27