22. 从360到630的自然数中有奇数个约数的数有()个?
A.25 B.23 C.17 D.7
这个题目我一般都是从问题提到的对象入手,自然数的约数?我们知道,求自然数约数无非就是将这个自然数分解因式然后看构成的数字形成多少个不同的乘积。
那么这个自然数就可以表示为自然数=A×B
A和B都是这个自然数的因数,也就是约数。
很明显一般情况下自然数的约数都是成对出现的,如 12=2×6,12=3×4,12=1×12,2和6是一对,3和4是一对,1和12是一对。既然是成对出现,那么这个自然数理论上说它的约数应该是偶数个才对。现在是奇数个。 什么样的情况会导致它是奇数个约数呢?
我们发现只有当这个自然数种一对约数相等的时候,就会少了1个约数,即A=B, 那么我们就看出这个自然数是一个平方数!
360~630 之间的平方数可以这样确定, 我们知道19的平方是361,25的平方是625,那么这样的自然数就是 19~25 共计7个自然数的平方值。
23. 王师傅加工一批零件,每天加工20个,可以提前1天完成。工作4天后,由于技术改进,每天可多加工5个,结果提前3天完成,问,:这批零件有多少个?
A 300 B280 C360 D270
这个题目我们可以通过比例法来解决。我们知道当A=m×n的时候
当A固定,m和n就是成反比,
当m固定A和n就是成正比,
当n固定,A和m也成正比
看这个题目,注意比较前后2种情况,
情况(1):每天加工20个 提前1天
情况(2):先工作4天(每天20个),以后每天是加工25个,可以前3天
我们发现两种情况对比
实际上情况(2)比情况(1)提前了3-1=2天
这2天是怎么节约出来的呢? 很明显是因为后面有部分工作每日工作效率提高了,所以那部分所用时间缩短了
根据4天后剩下的总工作量固定。 时间之比=每日效率的反比=20:25=4:5
5-4=1个比例点。即所提前的时间2天 ,1个比例点是2天。说明每日工作20个所需时间是对应的5个比例点就是2×5=10天, 意思就很清楚了,当工作4天后,如果不提高效率,还是每天20个,那么需要10天时间
所以这个题目的总工作量是20×(10+4)=280个
此题描述比较烦琐,但是比例法确实是一种快速解答问题的方法,希望大家能够花点时间去研究一下。
24. 某工作组有12名外国人,其中6人会说英语,5人会说法语,5人会说西班牙语;有3人即会说英又会说法,有2人既会说法又会说西;有2人既会说西又会说英;有1人这三种语言都会说.则只会说一种语言的人比一种语言都不会说的人多:
A1 B2 C3 D5
在前面的有道题目种我们总结了几个公式:
(1)A+B+T=总人数
(2)A+2B+3T=至少包含1种的总人数
(3)B+3T=至少包含2种的总人数
(4)T是三者都会的
这里介绍一下A、B、T分别是什么
看图 A=只会1种的总人数; B=只会2种的总人数;T=三种都会或者都参加的人数
根据题目我们得到如下计算:
(1)A+B+T+P=12
(P表示一种都不会说的)
(2)A+2B+3T=6+5+5=16
(3)B+3T=3+2+2=7
(4)T=1
我们可以很轻松的得到 B=4,A=5
T=1
那么P=2
答案就是 A-P=5-2=3